Artículo de Revision

Degenera??o de prótese valvar percut?nea e durabilidade

Dr. Lucia Vera-PernasettiServicio de Hemodinámica y cardiología intervencionista. Policlínica del Rosario, Ibiza, España.

O implante percutâneo da valva aórtica, conhecido como TAVI (*Transcatheter Aortic Valve Implantation*), revolucionou o tratamento da estenose aórtica (EA). Embora seja uma opção terapêutica relativamente nova se comparada à cirurgia de substituição da valva aórtica, nos últimos 15 anos seu uso se estendeu de tal maneira que o TAVI deixou de ser apenas uma alternativa eficaz e segura para se estabelecer como o tratamento de escolha para pacientes com EA severa quando por seu alto risco são inoperáveis ou quando este risco cirúrgico é elevado (indicação I-A segundo guias clínicos americanos e I-B segundo guias europeus). Mais ainda, estudos recentes estenderam a indicação para o tratamento de pacientes com risco intermediário (STS 4-8%), plasmando-o este ano com indicação IIa-B nos guias clínicos americanos e I-B nos europeus.¹

Devido ao rápido desenvolvimento tecnológico, ao envelhecimento da população e à ampliação de sua indicação a pacientes com menor risco, espera-se incrementos não só no número absoluto de implantes mas também na proporção de pacientes de menor risco e, por tanto, mais jovens. Em tal contexto e dada a maior expectativa de vida, a durabilidade do implante percutâneo valvar a longo prazo é um ponto crítico na decisão terapêutica entre um tratamento de substituição cirúrgica tradicional ou TAVI.²

A experiência cirúrgica evidenciou que as próteses biológicas têm como ponto fraco sua durabilidade limitada no tempo, sendo a degeneração a principal causa de falência valvar. Tanto é assim que a porcentagem de pacientes sem necessidade de reintervenção é de 94% em 10 anos, mas cai a 53% em 20 anos.^{3,4} Apesar do crescente número de publicações, ainda há poucos dados sobre a durabilidade das próteses percutâneas para além dos 5 anos. Além disso, existem inconsistências em sua definição e, portanto, grandes diferenças nas incidências relatadas. Na tabela 1 estão listadas as principais publicações com dados sobre a durabilidade dos TAVI.

A definição de degeneração estrutural da valva do consórcio de pesquisa acadêmica (*Valve Academic Reseach Consortium*, VARC-2)⁵ é a utilizada com maior frequência na atualidade:

Deterioro Valvular Deterioro Valvular Estructural Estructural Consenso EAPCI-ESC-EACTS VARC-2 Hemodinámico Morfológico Mixtas Necesidad de re-intervención (TAVI o RVAQ) MODERADO (cualquiera de los siguientes) Disfunción valvular: - Grad Medio ≥20 y < 40 Integridad anormal de velos: mmHg Gradiente > 20 mmhg torsión o flail - Aumento de Grad medio AVA < 0,9 a 1,1 Alteración estructural: >10 y <20 mmHG (dependiendo de la superficie Engrosamiento, calcificación corporal) con IAo, EAo - IAo intra-prótesis mod. o y/ o aumento o nueva de 1+/4+ · Movilidad anormal índice de velocidad SEVERO Doppler (IVD) < 0,35 - Grad. Medio ≥40 mmHg · Alteración del stent: fracturas Y/o Insuficiencia - Aumento de Grad. Medio moderada-severa ≥20 mmHg · Compresión * - IAo intra-prótesis severa o aumento >2+/4+ EAPCI, European Association of Percutaneos Cardiovascular interventions; ECS Auropean Fallo Valvular Association of Cardiology; European Association of Cardio-Thoracic Surgery; Deterioro "ESTRUCTURAL" y/o "NO-ESTRUCTURAL" ** VARC, Valve Academic Reseach Consortium; Grad gradiente; IAo insuficiencia aortica, EAo estenosisa órtica. consecuencias clínicas *No mencionada en consenso, aunque si en otras publicaciones. **Deterioro no-estructural (entre otras) Endocarditis Re-intervención Autopsia - Trombosis con disfunción de - Fuga peri-valvular (TAVI, fuga para-valvular, bioprótesis relacionada - Malposición

Em uma publicação recente, as sociedades científicas europeias propuseram definições mais precisas deste fenômeno amplo de "falência valvar" para TAVI e cirurgia de substituição da valva aórtica. São descritas duas formas de degeneração valvar: "não estrutural", que inclui processos extrínsecos (endocardite e trombose, entre outros) e a "degeneração estrutural", que se refere a mudanças intrínsecas adquiridas na estrutura da prótese. A degeneração estrutural se apresenta, por sua vez, em dois tipos predominantes (embora não excludentes): o "morfológico" e o "hemodinâmico", este último

con la muerte

- Embolización tardía

RVAQ)

baseado em mudanças permanentes detectadas por ecocardiografia. Finalmente, o consenso define a "falência da bioprótese" como um conceito integrador entre a degeneração da prótese e sua consequência clínica (sintomas, reintervenção, morte) e se propõe como objetivo para unificar o relato da incidência de eventos.⁶

No caso das próteses cirúrgicas, a degeneração com calcificação dos véus é a causa mais frequente de falência e poderia também ser o caso nas percutâneas. No entanto, existem diferenças no desenho e na técnica que podem causar diminuição da durabilidade no caso destas últimas. No implante percutâneo, a persistência da valva nativa é um fator chave, já que se associa a calcificação com expansão incorreta da prótese, o que pode condicionar à presença de assimetria e regurgitação, que, por sua vez, gerariam fluxos tumultuosos e degeneração acelerada. Por outro lado, os véus nativos deslocados pela prótese podem alterar os fluxos nos seios de Valsalva provocando assim zonas de maior estancamento, o que predispõe à trombose.^{7 8} De fato, em um estudo de estresse mecânico, a anatomia ovalada do trato de saída e anel poderia alterar o fluxo e favorecer dano estrutural, o que se agrava em casos de infraexpansão por *oversizing*.²

As próteses percutâneas mais frequentemente utilizadas se constroem com tecido pericárdico, seja de origem bovina no caso da Edwards-Sapien (Edwards Lifesciences) ou porcina no caso da Core-Valve (Medtronic, Inc.). O tipo de material biológico poderia influir na durabilidade a longo prazo e atualmente é matéria de estudo. Outra diferença com relação às próteses cirúrgicas é que os véus são mais finos (0,25 vs. 0,4 mm, aproximadamente) e requer a prensagem no sistema de liberação. Estes dois fatores poderiam condicionar a uma menor resistência ao estresse hemodinâmico.

As séries observacionais cirúrgicas mostraram que a idade no momento do implante é um dos fatores de maior peso na incidência de degeneração bioprotética, e este conceito poderia ser extrapolado para as próteses percutâneas. ¹⁰ Isso se deve, por um lado, a uma expectativa de vida maior que daria tempo ao processo progressivo de deterioro, e por outro, a fatores de tipo imunológico e /ou hemodinâmico. Existem outros fatores que predispõem à degeneração, como por exemplo, alterações do metabolismo fosfocálcico, insuficiência renal e fatores de risco cardiovasculares clássicos. ^{4,3} Outros potenciais preditores de degeneração precoce poderiam ser a ausência de anticoagulação, próteses pequenas (23 mm), procedimentos *Valve-in-Valve* e obesidade. ¹¹ Em uma análise de 5 anos com válvula balão-expansível, a área valvar pequena no momento da alta também foi um preditor independente de DVE. ¹² Atualmente não se sabe se o tipo de prótese percutânea teria influência na durabilidade a longo prazo.

A formação de trombo nas próteses aórticas percutâneas é um fenômeno heterogêneo que pode ocorrer de forma sintomática (2,8%) ou, mais frequentemente, assintomática com prevalência de até 12%. 13,14 A mesma foi observada inicialmente em próteses cirúrgicas, embora sua incidência pareça ser maior nas percutâneas (4 vs. 13%). 15 A falta de tratamento anticoagulante se relacionou em vários estudos com a degeneração valvar, ainda que por falhas metodológicas não foi possível estabelecer uma relação causal clara. 11,16 A trombose poderia diminuir a mobilidade dos véus, o que levaria à superestimação das incidências de DVE. Por outro lado, a própria trombose e consequente alteração no fluxo podem causar aceleração do processo de degeneração dos véus.

A incidência de DVE de próteses percutâneas em seguimentos de até 5 anos é, em geral, muito baixa. Uma metanálise recente que incluiu 8.914 pacientes (entre 2004 e 2015) relatou uma incidência total estimada de 28 por 10.000 pacientes/ano, que equivale a uma incidência de 0,6% em 2 anos. ¹⁷ Estas cifras elevadas em seguimentos mais longos se devem, provavelmente, ao fato de terem sido usadas próteses de primeira geração, de terem sido pacientes mais idosos e com calcificação acentuada e a fatores tecnológicos menos desenvolvidos. Contudo, existe a possibilidade de que a válvula apresente degeneração a taxas mais elevadas depois de transcorridos 10 anos de seguimento, como ocorre com suas homólogas cirúrgicas.

A DVE pode ser assintomática ou pode se apresentar como insuficiência/estenose de diferentes graus.

Caso sejam documentados aumento de gradientes, deve ser valorada a presença de trombose, iniciando tratamento anticoagulante em caso afirmativo. Se esta última for descartada e se for confirmada a DVE, atualmente se considera como primeira linha o tratamento percutâneo. Dados preliminares demonstram que procedimentos *Valve-in-Valve* mostraram ser uma opção viável e com menor risco de complicações pós-operatórias que uma nova cirurgia a curto e médio prazo. No caso de pacientes com TAVI prévio, dado o risco, de início elevado, a toractomia não é a priori uma opção em comparação com um procedimento que tecnicamente não apresenta excessiva complexidade. Alguns autores afirmam que a presença de uma válvula poderia facilitar a escolha da nova prótese e do implante. A desvantagem desta técnica é, novamente, a escassez de dados e a durabilidade da segunda prótese, já que em alguns estudos o *Valve-in-Valve* se associou à degeneração protética. Outro ponto a levar em consideração é que o acesso aos óstios coronarianos poderia se dificultar em casos de próteses que se estendem até a raiz da aorta.

Para concluir, os dados atuais permitem afirmar que a durabilidade relatada do TAVI é adequada para a população de maior idade ou de alto ou moderado risco cirúrgico. No entanto, ainda é necessário contar com mais evidência, com estudos detalhados de estrutura e função, bem como com seguimento de mais longo prazo (> 10 anos) para confirmar que a durabilidade da prótese é maior que a expectativa de vida esperada do paciente. Uma vez que dispusermos de dados que confirmem uma funcionalidade adequada a longo prazo, é provável que o TAVI se estenda a pacientes jovens e se estabeleça como uma opção real frente à cirurgia cardíaca neste grupo de pacientes de menor risco.

Tabela 1: Estudos relatando durabilidade valvular a longo prazo

Autor/ ano	Tipo publicação/ estudo	Número pacientes TAVI ¹	Seguimento (média ou mediana) (anos)	Tipo Válvula²	Incidência DVE	Definição de DVE	Tipo DVE / Comentários
Ussia ²² 2012	Coorte, multicêntrica (registro Italiano)	181	3	AE	0%	Critérios VARC	Grad. estáveis
Mack ²³ 2015	PARTNER 1 (seguimento de 5 anos)	384	5	BE	0%	Reintervenção	· Grad. e áreas estáveis
Deeb ²⁴ 2016	Randomizado, multicêntrico (Corevalve U.S. Pivotal Trial)	228	3	AE	- 0%	-Estruturais	· Grad e áreas
					- 9,5%	- Aumento Grad. > 50%	estáveis
Foroutan ¹⁷ 2017	Metanálise (13 estudos)	8.914	1,8 a 5	BE 56% AE 35% NR 9%	0 a 5,5%	Critérios VARC e Grad > 20mmHg	· Incidência agrupada de 28/10.000 pac- ano
					- 0,9%	- Relato inicial	· n 22 (10 EAo,
Gerckens ²⁵ 2017	Coorte prospectiva, multicêntrica	860	3	AE	- 2,6 % (n=22)	- VARC-2 (post- hoc)	11 IAo mod- severa, 1 misto) • Reint. 1,2%
					- 9,3%	- Aumento Grad > 50% (Post-hoc)	*

Douglas ²⁶ 2017	PARTNER 1A y 1B	424 (com ETT seguimente de 5 anos)	0	BE	- 0,5%	- Grad. Med. absoluto > 40 mmHg - VARC-2 de EAo leve	Reint. 0,8% (n = 20, maioria regurgitação, 3 IAo, 4 EAo e 1 DVE)
Muratori ¹² 2017	Coorte, unicêntrica	96	4,9 (com ETT) 5,4 (clínico)	BE	30%	Engrossamento (> 3 mm), calcificação e movimento anormal de véus	 Não Reint Aumento leve-mod. de Grad. IAo em 45% de DVS

DVE, degeneração valvar estrutural; BE balão-expansível, AE, autoexpansível; VARC, *Valve Academic Research Conseortium;* EAo, estenose aórtica; IAo, insuficiência aórtica; Grad., gradientes; Seg., seguimento; Valv., válvulas; NR, não relatado; Pac., pacientes; Reint., reintervenção (cirúrgica ou percutânea); ETT ecocardiograma transtorácico; Mod., moderado; KM Kaplan-Meier.

- 1: Pacientes disponíveis para análise ecocardiográfica/clínica para o seguimento indicado, exceto na metanálise.
- 2: BE, balão-expansível; inclui –segundo estudos– Cribier-Edwards TM, Edwards SAPIEN, Edwards SAPIEN-XT). AE, autoexpansível, maioria Medtronic CoreValve.

E-mail: luverapernasetti@yahoo.com.ar

E-mail: rodrigobagur@yahoo.com

Rreferências:

- 1. Barbanti, M., Webb, J. G., Gilard, M. & Capodanno, D. Transcatheter aortic valve implantation in 2017: state of the art. 11–21 (2017).
- 2. Bagur, R., Pibarot, P. & Otto, C. M. Importance of the valve durability-life expectancy ratio in selection of a prosthetic aortic valve. *Heart* 103, 1756–1759 (2017).
- 3. Arsalan, M. & Walther, T. Durability of prostheses for transcatheter aortic valve implantation. *Nat. Rev. Cardiol.* 13, 360–367 (2016).
- 4. Côté, N., Pibarot, P. &